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A point-force model is used to study turbulent momentum transfer in the presence
of moderate mass loadings of small (relative to Kolmogorov scales), dense (relative
to the carrier phase density) particles. Turbulent Couette flow is simulated via direct
numerical simulation, while individual particles are tracked as Lagrangian elements
interacting with the carrier phase through a momentum coupling force. This force
is computed based on the bulk drag of each particle, computed from its local slip
velocity. By inspecting a parameter space consisting of particle Stokes number and
mass loading, a general picture of how and under what conditions particles can alter
near-wall turbulent flow is developed. In general, it is found that particles which
adhere to the requirements for the point-particle approximation attenuate small-scale
turbulence levels, as measured by wall-normal and spanwise velocity fluctuations,
and decrease turbulent fluxes. Particles tend to weaken near-wall vortical activity,
which in turn, through changes in burst/sweep intensities, weakens the ability of the
turbulent carrier-phase motion to transfer momentum in the wall-normal direction.
Compensating this effect is the often-ignored capacity of the dispersed phase to carry
stress, resulting in a total momentum transfer which remains nearly unchanged. The
results of this study can be used to interpret physical processes above the ocean
surface, where sea spray potentially plays an important role in vertical momentum
transfer. C© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4804391]

I. INTRODUCTION

The addition of particles to a turbulent flow is a fundamental problem studied extensively in the
past using both experiments and numerical simulations. Motivated by a wide range of applications,
for example, turbidity currents,1 spray combustion,2 or cloud physics,3 various dispersed phase
processes such as particle deposition, particle segregation, and turbulence modification have been
investigated in detail. The present study focuses on the ability of the dispersed phase to alter
momentum transport in a wall-bounded turbulent flow. This is an important question, for example,
in deciding how to treat sea spray in atmospheric models; currently, an ongoing debate exists over
whether or not the presence of such a dispersed phase in the near-surface atmospheric boundary layer
is dynamically important, and whether it influences the drag of the ocean surface at high winds.4–7

Numerous factors control whether or not particles enhance or attenuate turbulence levels in
a flow. Based on experimental evidence, Gore and Crowe8 cite the ratio of the particle diameter
to the turbulence integral length scale as determining whether or not turbulence will be enhanced,
and Hetsroni9 uses the particle Reynolds number to distinguish how particles modify turbulence.
More recently, Tanaka and Eaton10 nondimensionalize the governing dispersed phase equations and
define a nondimensional parameter which they find separates the results of previous wall-bound
experimental studies into regions of turbulence augmentation and attenuation.

Attempts to define a single governing parameter highlight the difficulty associated with pre-
dicting the effect of particles on turbulence: the many simultaneous physical effects are difficult
to distinguish from one another. For small spheres, it is generally agreed that since the particle
Reynolds numbers remain small and their disturbances to the velocity field remain negligible, the
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added drag on the carrier phase results in an attenuation of turbulence. As particles increase in
size, however, two effects can become important: the particle Reynolds number can increase to the
point where particles shed wakes, thereby adding turbulent energy at small scales,9 and the particle
diameter can approach the size of the smallest turbulent eddies. The latter effect has been shown to
increase local dissipation up to 10 radii away,11, 12 and is therefore not the same effect as solely in-
creasing the particle Reynolds number. Also, differences in Stokes numbers (the ratio of the particle
acceleration time scale to a flow time scale) dictate how efficiently the particles can preferentially
concentrate, particularly in near-wall streaks, which affects various statistics due to enhancement of
local concentrations.13–15

The present study focuses on particles smaller than the Kolmogorov scale, and whose Reynolds
numbers remain low. This allows the use of the numerical point-particle formulation, where each
particle is tracked as a Lagrangian element and its drag is interpreted as a point force within the
carrier phase. This method is successfully used in past studies to probe the effects of a dispersed
phase on wall-bounded turbulence.

Pan and Banerjee16 utilize a numerical method similar to but not considered a point-force
method. By accounting for feedback effects through a disturbance velocity (rather than a force), they
are able to study the changes in wall-normal settling velocity, particle concentration, and particle
size in a turbulent channel flow. They observe both attenuation and enhancement of turbulence with
small and large particles, respectively, corresponding to increases and decreases in the frequency
of the near-wall ejection-sweep cycle. Li et al.17 examine turbulent channel flow at Reτ = 125,
laden with particles of varying Stokes numbers, mass fractions, and density ratios. For a constant
pressure gradient and with a streamwise gravitational force acting on the dispersed phase (i.e., a
vertically oriented channel), they find an increase in the bulk flow rate as well as a significant
reduction in magnitude of the Reynolds stresses throughout the channel, depending on the particle
characteristics. Particle collisions also modify turbulence statistics. Again in a turbulent channel,
Mito and Hanratty18 study entrainment and deposition by injecting and removing particles at the
walls (rather than allowing them to elastically collide as is typically done). They observe significant
reductions in Reynolds stresses and wall-normal turbulent fluctuations, and interpret the reduction
in Reynolds stress as a direct result of the increased feedback force with increasing mass loading.
Zhao et al.19 report similar changes to turbulent channel flow, showing an increase in flow rate
(at a constant pressure gradient) with a corresponding decrease in Reynolds stress. They show a
decrease in the intensity of the turbulent motions, with increased streamwise coherence of near-
wall streaks after the addition of a somewhat high loading of solid particles. In a series of studies,
Dritselis and Vlachos20, 21 use the point-particle approach with conditional averaging to study how
near-wall coherent structures are affected by small particles. They find that by collectively opposing
local rotational motion, the elements of the dispersed phase effectively produce a counter-torque
within near-wall vortical motions, thereby weakening them and damping wall-normal momentum
transport.

As pointed out by Eaton,22 the point-particle approach is fundamentally limited in that it cannot
represent particles interacting with turbulent scales equal to or smaller than their diameter. Present
studies are just beginning to fully resolve the flow around individual particles and couple their
interaction with the carrier phase. Shao et al.23 recently did this for a turbulent channel flow, and
Gao et al.24 and Lucci et al.25 do so for isotropic turbulence. These fully resolved simulations,
however, are limited to low density ratios, low Reynolds numbers, and relatively large particles.

The objective of the present study is to determine and explain changes in wall-normal momentum
transport with the addition of small spherical particles. This is primarily motivated by the turbulent,
spray-laden air/sea interface, where the sensitivity of wall-normal turbulent fluxes to a dispersed
phase (i.e., their size, concentration, etc.) needs to be determined in order to predict the surface drag
at high winds. Since the density difference between air and water is large, and especially since fully
resolving realistic concentrations of spray droplets are prohibitively expensive, the point-particle
approximation is used. Turbulent Couette flow, in contrast with the more common pressure-driven
channel flow, is employed since the total wall-normal momentum transport is constant with height—a
characteristic which is not present in channel flow and allows for unambiguous comparisons between
varying dispersed phase conditions. While the present work is motivated by spray suspended above
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FIG. 1. Schematic of Couette cell geometry. Reference velocity U0 is the difference in plate velocity and reference length H
is the distance between the plates.

the air-sea interface, this article focuses on the fundamental interactions between turbulence and
dispersed phases, reserving discussion of the marine boundary layer to other audiences.26

II. PROBLEM FORMULATION

A. Carrier phase

The equations governing the carrier phase are the incompressible Navier-Stokes equations,
including a particle feedback force in the momentum equations. These include mass conservation,

∂u j

∂x j
= 0, (1)

and momentum conservation,

∂ui

∂t
+ u j

∂ui

∂x j
= − 1

ρ f

∂p

∂xi
+ ν f

∂ui

∂x j∂x j
+ 1

ρ f
Fi , (2)

where ρ f is the carrier fluid density, ν f = μf/ρ f is the carrier phase kinematic viscosity, and Fi is
a source term representing the modeled transfer of momentum between the carrier and dispersed
phases. Fi is computed by summing the collective force felt by particles due to drag within a
computational volume; see Sec. II B.

The flow studied is turbulent Couette flow between infinite parallel plates separated by a distance
H, represented schematically in Figure 1, where each of the two plates moves at an equal and opposite
velocity of U0/2. No-slip boundary conditions are imposed on the carrier phase at the walls, and
periodicity is enforced in both the streamwise (x) and spanwise (y) directions. Since the flow is
driven by the motion of the plates, no mean pressure gradient exists. The bulk Reynolds number of
all simulations is prescribed to be Re = U0H/ν f = 8100.

As noted in the Introduction, the total stress profile in Couette flow is constant with height, even
in the presence of a dispersed phase. The total stress, denoted τ throughout, is therefore equal to
the wall stress τw, and can be used to define the friction velocity uτ = √

τw/ρ f and viscous length
δν = ν f/uτ . This constant stress profile is ideal for monitoring changes to the balance of the momentum
flux components across flow regimes with varying types of particles. Note that, as defined above,
the bulk Reynolds number does not vary with the addition of a dispersed phase, while the friction
Reynolds number (Reτ = uτ H/(2ν f)) can change with varying particle effects. The constant-stress
profile also mimics the constant-flux layer found in the lower portion of the atmosphere, which is a
common assumption when modeling fluxes from the ocean surface in the presence of spray.4, 27

B. Dispersed phase

Within the carrier phase, the point-particle technique is employed to track and transport the
non-interacting elements of the dispersed phase. Each particle is assumed to collide elastically with
the domain walls. The point-particle approximation implies that the individual particles are not
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explicitly resolved on the mesh, but rather are located at an infinitesimal point and interact with the
carrier phase through a point force determined by a drag coefficient and a local slip velocity. This
assumption is valid provided several criteria are met: the particle Reynolds number remains O(1) or
below; the particle size remains smaller than the smallest scales of the surrounding turbulent flow;
and the average distance between particles is large compared to its diameter. The current study,
therefore, is valid only for particles which satisfy these conditions. Furthermore, the assumption
that the density ratio between the particle and the fluid (ρp/ρ f) is large allows for simplification of
the governing dispersed phase equations.28 Under these assumptions, the equations governing the
motion of each particle are

dxi

dt
= vi , (3)

dvi

dt
= fi

m p
= (

1 + 0.15Re0.687
p

) 1

τp

(
u f,i − vi

)
, (4)

where xi is the location of the point particle; vi is its velocity; uf, i is the fluid velocity at the particle
location; τ p is the Stokes relaxation time of the particle, defined as τp = ρpd2

p/18μ f , where ρp

and dp are the particle density and diameter, respectively; and Rep is the particle Reynolds number,
defined as Rep = |u f,i − vi |dp/ν f . The quantity

(
u f,i − vi

)
is the slip velocity of the particle. The

Rep dependence in Eq. (4) comes from an empirical drag coefficient for a rigid sphere,29

CD = 24

Rep

(
1 + 0.15Re0.687

p

)
. (5)

This Reynolds number correction to the linear Stokes drag experienced by a solid, spherical particle
is valid up to Rep ≈ 800.

To dynamically couple the dispersed and carrier phases, the drag force experienced by an
individual particle (fi in Eq. (4)) is related to the momentum source term Fi in Eq. (2). For this study,
a projection technique is used (as opposed to the particle-in-cell approach), where the individual
force of particle α, fi, α , is geometrically projected onto the eight surrounding computational nodes
for each particle in the system,

F j
i = −

∑
α

w
j
α

�Vα

fi,α. (6)

In Eq. (6), the summation is over each particle α contained in the total volume created by the
union of all eight computational volumes which share node j, and w

j
α is the (dimensionless) linear

geometric weight for each particle based on its distance from node j. �Vα refers to the volume of
the computational cell which the particle lies in. Boivin et al.30 show that this projection technique,
when compared to the particle-in-cell approach, can more fully reconstruct an energy spectrum
from the fluid velocities interpolated to the particle location. It is successfully implemented in other
complex applications.2

By only incorporating a drag force on each particle, other force terms in the equation for motion
about a sphere, such as the Basset history force, the Faxen corrections, and the added mass term, are
neglected since they remain small compared to drag when the density ratio ρp/ρ f is large. Another
simplification is that the particles are assumed not to interact with each other, as the bulk volume
fraction remains low (below 10−3) throughout this study. Finally, gravity is also neglected from
the equations of particle motion, in order to investigate the interaction between the particles and
turbulence absent from the effects of other body forces.

C. Numerical implementation

The structure of Couette flow differs significantly from that of channel flow, primarily due to
large rollers spanning roughly 15 channel heights in the streamwise direction which have no direct
analogy in boundary layer flow (see, for example, Lee and Kim31 for a description). The existence of
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these structures present numerical difficulties, as illustrated in previous DNS studies by Komminaho
et al.32 and Tsukahara et al.,33 where domains of large spanwise and streamwise extent (upwards
of [Lx, Ly] = [20H, 8H]) are required to resolve multiple rollers. In the present case, computational
constraints restrict the domain size to be [Lx, Ly, Lz] = [2πH, 2πH, H]. Preliminary tests indicate
that particle-laden velocity statistics, particularly the Reynolds stresses, are relatively insensitive to
spanwise extent, in agreement with the findings of Tsukahara et al.33 who show that while two-point
correlation statistics are dependent on domain size, turbulent velocity statistics are generally not.

The number of grid points in each direction are [Nx, Ny, Nz] = [128, 256, 128], and these are
distributed uniformly in the periodic x and y directions (with �x = Lx/Nx and �y = Ly/Ny). The
higher resolution in the y (spanwise) direction is required to resolve thin near-wall streaks. In the
z direction, algebraic stretching is used to cluster points near the walls, specifying an initial grid
spacing of �z+

f irst = 1 (where the superscript + refers to scaling by the viscous length δν). In viscous
units, �x+ = 12.25, and �y+ = 6.125, while the grid resolution normalized by the Kolmogorov
length at the channel centerline is: [�x/ηK, �y/ηK, �z/ηK] = [4.9, 2.45, 1.5]. This resolution is
adequate for fully resolving the viscous dissipative scales in direct numerical simulation.34

The equations governing the carrier fluid phase, Eqs. (1) and (2), are solved numerically using
a parallelized large eddy simulation code developed for studying the planetary boundary layer,35

modified for direct numerical simulation. Spatial discretization is pseudospectral in the x and y
directions, and second order finite differences are used for spatial derivatives in the inhomogeneous
z direction. Time advancement is accomplished using a low storage, third order Runge-Kutta (RK3)
scheme36 for all terms in the momentum equation where the adaptive time step �t is determined from
a Courant-Friedrichs-Lewy (CFL) number of 0.63. Incompressibility is enforced via a fractional step
method, where a pressure Poisson system is solved to guarantee divergence-free velocity fields at
each Runge-Kutta stage.

At each time step, in addition to advancing the fluid velocity and pressure, each element of the
dispersed phase is integrated according to Eqs. (3) and (4) using the same RK3 time discretization
utilized for the carrier phase. Since the particle locations do not coincide with the computational
mesh, fifth order Lagrange interpolation is used at each RK3 stage to obtain the fluid velocity at
the instantaneous particle location. In the z direction near the walls, this is modified to maintain the
highest degree of polynomial while keeping the interpolation stencil symmetric about the particle.

In all simulations, the carrier phase is initialized by the velocity field obtained from a previously
simulated unladen case with the particles distributed randomly throughout the domain. The simula-
tions are then run for at least 2.5 × 105 time steps for a total time of at least tU0/H ≈ 4000 or t+

= tuτ /δν ≈ 62 500.
Finally, validation of the numerical scheme was done in several stages. First, the accuracy

of the carrier phase solution was confirmed by comparing to previous simulations of turbulent
Couette flow;33, 37, 38 particularly, ensuring that mean and fluctuating velocity statistics were faithfully
captured. Next, passive particle transport (i.e., one-way coupling) was verified by testing against the
benchmark case of Marchioli et al.,39 and finally, two-way coupling was verified by qualitatively
comparing channel flow simulations to existing studies.17, 19, 21

III. PARAMETER CHOICES

Once the non-interacting, point-particle approximation is invoked within the numerical scheme,
the system collapses in complexity, and results can only be faithfully compared to physical cases
where the necessary conditions of the model are met. For the current case, the primary parameters
of interest are the particle Stokes number, defined as the ratio between the particle acceleration time
scale and the Kolmogorov time scale at the channel centerline (StK = τ p/τK), and the mass loading
of particles φm, defined as the ratio of the particle mass in the system to the carrier phase mass.
Individual parameters dp and ρp/ρ f do not appear independently (except indirectly, as dp appears in
the Reynolds number correction to the drag in Eq. (5)), and are chosen to achieve desired values
of StK and φm. Attempts to compare the current results to a study such as Tanaka and Eaton,10 for
example, are not possible since they include finite-volume effects of the dispersed phase.
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(a)

ρ

(b)

FIG. 2. (a) Normalized mean particle concentration 〈c 〉 /c0 versus z+, where c0 is homogeneous bulk particle concentration.
(b) Normalized mean particle feedback force, 〈Fx 〉 /(ρ f U 2

0 /H ). Curves represent the following: unladen case (solid); small
particle, d+

p = 0.25 (dashed); large particle, d+
p = 1.25 (dotted); and small particle with the rebound distance specified at

z+ = 1.25 (dashed-dotted). All particle-laden runs at StK ≈ 11 and φm = 0.25.

The particle diameter determines the collision distance from the wall, and this plays an important
role in the overall dynamics. Particles with diameters small compared to the viscous length, d+

p � 1,
tend to “stick” near the walls, with the carrier phase not providing enough wall-normal transport to
eject them back into the channel center due to strong viscous effects near the wall. Particles with
diameters larger than d+

p ≈ 1, on the other hand, are by definition larger than a viscous wall unit
and are therefore more likely to interact with wall-normal turbulent motions. Thus a flow with the
same mass fraction and larger d+

p will have more particle mass in the bulk of the domain and as a
result experience a higher feedback force than those with d+

p < 1. This is a phenomenon observed
experimentally,40 where wall ejections are not capable of transporting particles from the wall into
the flow if d+

p is less than roughly 1.3. Since the current simulation model does not contain a lifting
force on a particle, the ability of particles to be transported away from the walls is likely reduced.

The particle trapping effect is illustrated in Figure 2, where the normalized particle mass
concentration 〈c〉 /c0 (where c0 is the bulk homogeneous mass concentration) and normalized carrier
feedback force 〈Fx 〉 /(ρ f U 2

0 /H ) are shown over the normalized channel half-height for four different
simulations. The figure illustrates that for particles with the same StK and φm, the rebound distance
from the wall can greatly affect the concentration of particles within the channel, and consequently
the particle feedback force felt by the carrier phase. The dashed and dashed-dotted curves show
the concentration and feedback force for particles with the same specified diameter of d+ = 0.25,
except that the dashed-dotted lines correspond to particles which artificially bounce from the walls
as though their diameter was d+ = 1.25. The concentration and feedback force are then larger, and
nearly exactly equal to a case where the particle diameter is set to be d+ = 1.25 with the same StK
and φm (dotted lines). In the current simulations, therefore, the particle diameter d+ is maintained
roughly equal to 1.25 in order to eliminate this trapping effect from the different cases.

Table I summarizes the details of our simulations. At a constant value of StK ≈ 11, the mass
fraction φm is varied between 0.1, 0.25, and 0.5, and these are designated Runs 1, 2, and 3. At a
constant value of φm = 0.25, StK is varied between 1.2, 10.2, and 97.2, and these simulations are
designated Runs 4 and 5 (the combination φm = 0.25, StK = 10.2 is common between both sets in
Run 2). Note that variations in StK and d+

p are due to minor differences in the Kolmogorov time
scale τK at the channel centerline and the viscous length scale δν , respectively. The results shown in
Secs. IV and V, therefore, typically include two items: one showing trends with changing StK while
φm is held constant, and one showing the effects of holding StK constant and increasing φm.
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TABLE I. Particle-laden simulation parameters. Runs 1–3 maintain relatively constant StK and vary φm while Runs 4 and
5 vary StK at a constant φm. The particle Stokes number based on wall units, St+, and the mean particle Reynolds number,
〈Rep〉, are included as well for reference. Also indicated are the curve types used for each case in all subsequent plots.

Run φm StK ρp/ρf d+
p St+ 〈Rep〉 Curve

1 0.1 12.6 1000 1.25 89.3 1.7 Dashed
2 0.25 11.7 1000 1.25 88.4 1.5 Dotted
3 0.5 10.2 1000 1.26 89.3 1.3 Dashed–dotted
4 0.25 1.2 100 1.25 8.5 0.5 Long dashed
5 0.25 97.2 8000 1.24 714 3.6 Dashed double-dotted

IV. RESULTS

A. Fluctuating velocities

Figure 3 presents vertical profiles of the root-mean-square (rms) streamwise velocity fluctua-
tions, normalized by U0. In Figure 3(a), the profiles are shown for increasing values of StK at φm

= 0.25. The effect of Stokes number on u′
rms is non-monotonic. At the highest StK the streamwise

fluctuations are nearly unaffected across the channel. At the intermediate Stokes number, StK = 11.7,
the fluctuations are increased across the entire channel height. The lowest StK shows a combination
of these effects. This behavior is tightly linked to the large Couette rollers as well as the near-wall
velocity streaks, and is discussed further in Sec. V. Figure 3(b) presents the same profiles, but for
increasing mass loading φm holding StK ≈ 11. Not surprisingly, the increased mass loading enhances
the effects over the channel height, and the magnitude of u′

rms rises monotonically with φm. Since
particle-particle interactions are ignored, the higher local concentrations act to linearly increase the
momentum coupling force. It should be noted that, as Tsukahara et al.33 demonstrate, the large
midplane rollers in turbulent Couette flow cause the mid-channel streamwise velocity fluctuations
to remain much larger than in turbulent channel flow. Thus it is the behavior of these rollers and
how they interact with the particles which dictates the streamwise velocity fluctuations away from
the walls.

Figure 4 shows similar profiles for the wall-normal velocity fluctuations, w′
rms , where significant

reductions are seen in all cases and at all heights. From Figure 4(a), the behavior of w′
rms with

increasing StK appears to be non-monotonic as well, assuming that as StK is lowered below StK ≈ 1

′
(a)

′

φ
φ
φ

(b)

FIG. 3. (a) Fluctuating streamwise velocity profile for varying StK, holding φm = 0.25 constant. (b) Fluctuating streamwise
velocity profile for varying φm, holding StK ≈ 11 constant. Fluctuating velocities normalized by plate velocity U0 and
wall-normal position normalized by channel height H.
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(a)
′

φ
φ
φ

(b)

FIG. 4. (a) Fluctuating wall-normal velocity profile for varying StK, holding φm = 0.25 constant. (b) Fluctuating wall-
normal velocity profile for varying φm, holding StK ≈ 11 constant. Fluctuating velocities normalized by plate velocity U0

and wall-normal position normalized by channel height H.

it approaches the unladen profile. Although no additional runs below StK = 1.2 are performed due
to computational constraints, it is expected that the maximum effect is centered around StK ≈ 1,
since previous studies have indicated that particles show maximum preferential concentration in a
channel at this Stokes number.13, 41 Other numerical studies have observed similar non-monotonic
behavior with changing Stokes number.17 Figure 4(b) again shows that the decrease of wall-normal
velocity fluctuations is enhanced as the mass fraction increases.

This behavior of u′
rms and w′

rms is in qualitative agreement with previous point-particle sim-
ulations in turbulent channel flow. Li et al.,17 Dritselis and Vlachos,21 and Zhao et al.19 all show
similar decreases of w′

rms and increases of u′
rms , despite the differences in flow configuration (chan-

nel versus Couette), treatment of gravity, Stokes numbers, mass loadings, and other physical effects
(i.e., collisions, etc.). Furthermore, the experiments of Kulick et al.42 and Righetti and Romano43

indicate reductions of wall-normal velocity fluctuations, similarly amplified with increasing mass
loading. Comparisons of the streamwise velocity fluctuations with the experimental data are not
straightforward, however. Kulick et al.42 show a monotonic decrease in u′

rms with mass loading, an
effect opposite to the trend in Figure 3(b), but the absence of a streamwise gravitational particle force
in the present model can likely explain this discrepancy (the experimental setup of Kulick et al.42

consisted of a vertically oriented channel), combined with the differences in flow geometry.

B. Turbulent stress

While Figures 3 and 4 give an indication of how the dispersed phase alters the turbulent kinetic
energy throughout the Couette geometry, Figure 5 shows profiles of the various components of
the total stress. To define each of these components, Reynolds averaging is performed on Eq. (2),
where the velocity of each phase is split into mean and fluctuating components (ui = 〈Ui 〉 + u′

i ), and
spatial averaging is done over the x and y directions (averaging is denoted with 〈 · 〉). The averaged
streamwise momentum equation for Couette flow with particles is

ρ f ν f
∂2 〈U 〉
∂z2

− ρ f
∂

∂z

〈
u′w′〉 + 〈Fx 〉 = 0. (7)

One can then define a total stress τ as

τ = ρ f
〈
u′w′〉 − ρ f ν f

∂ 〈U 〉
∂z

−
∫ z

0

〈
Fx (z∗)

〉
dz∗, (8)
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τ ρ

τ total τ turbulent τ particle

τ viscous

(a)

τ ρ

τ total τ turbulent τ particle

τ viscous

(b)

FIG. 5. (a) Profiles of total, viscous, turbulent, and particle stress for varying StK, holding φm = 0.25 constant. (b) Stress
profiles for varying φm, holding StK ≈ 11 constant. Stress normalized by ρ f U 2

0 and wall-normal position normalized by
channel height H. The curves corresponding to different stress components are indicated on the figures.

which allows Eq. (7) to be written as

∂τ

∂z
= 0 ⇒ τ (z) = τw, (9)

where τw is the value of the total stress at the wall, and thus the total stress is constant with height.
Equation (8) shows that the total stress is the sum of the usual components and a new stress due

to the coupling between the carrier and dispersed phases. This stress component is a vertical integral
of the mean streamwise particle force 〈Fx〉.

Inspecting Figure 5, it is clear that the total stress does in fact remain constant over the channel
height for all simulations. For the unladen case, as is typical for wall-bounded flows, the stress
balance shows viscous stress dominating near the walls, while turbulent stress dominates above
z+ ≈ 15. When introducing a dispersed phase, however, this balance is modified by the additional
particle stress.

Figure 5(a) displays the stress profiles, normalized by ρ f U 2
0 , for varying StK at a constant

φm = 0.25. First, the viscous stress remains nearly unchanged, regardless of the particle Stokes
number, implying that the mean velocity profile is nearly unchanged as well. Second, the turbulent
stress contribution can be significantly reduced in magnitude, with a maximum reduction of about
12% at the lowest StK considered. As with the behavior of u′

rms , the reduction of
〈
u′w′〉 magnitude

appears to be non-monotonic, with a maximum around StK ≈ 1. This reduction of the turbulent stress
is nearly offset by a rise in the particle stress, resulting in a total stress which varies only slightly
with StK. Since both the turbulent and particle stresses decay to zero at the wall, the small change
in total stress is indicative of the minor changes in the mean velocity profile at the wall. Note that
there is no theoretical constraint guaranteeing this near-constancy of the total stress, since changes
to the mean velocity profile may be brought about by particle interactions.

Figure 5(b) shows the behavior of the stress components with varying mass fraction, holding
StK ≈ 11. As with u′

rms and w′
rms , the reduction in the magnitude of

〈
u′w′〉 and subsequent rise of

particle stress is amplified nearly linearly with increases in particle concentration. In this case, as
the mass fraction of the dispersed phase is increased, the total stress increases by roughly 4%. As
in the case of the fluctuating velocities, the reduction of

〈
u′w′〉 magnitude over the channel height

with the addition of a dispersed phase has been observed both experimentally and numerically for
turbulent wall-bounded flows.17–19, 43

Physically, this behavior indicates that while the total momentum transfer from the bottom plate
to the top plate remains constant within 4%, the transfer by the turbulent carrier phase motion is



053304-10 D. H. Richter and P. P. Sullivan Phys. Fluids 25, 053304 (2013)

significantly reduced by the presence of a dispersed phase, implying a change in the structural nature
of the near-wall turbulence. This reduction is offset by the dispersed phase contributing up to 15%
of the total momentum transfer, an effect which increases monotonically with dispersed phase mass
fraction φm and non-monotonically with StK.

At this point, it is instructive to further explore the particle stress, following a procedure outlined
nicely by Mito and Hanratty,18 where the momentum balance of the dispersed phase is analyzed.
When describing a dispersed phase as a continuous field, a momentum balance yields

∂

∂t
(cvi ) + ∂

∂x j

(
cviv j

) = −Fi . (10)

Here, c refers to the local, instantaneous particle mass concentration, vi refers to the dispersed phase
velocity, and Fi is the local force per unit volume found in Eq. (2) coupling the two phases. In this
formulation, the instantaneous local concentration c is binary (equal to 0 inside the carrier phase or
ρp inside the dispersed phase) since the carrier and dispersed phases do not mix. Note the momentum
source for the dispersed phase is merely the negative momentum source for the carrier phase.

Performing the Reynolds averaging procedure on Eq. (10) and writing only the expression for
the streamwise component leads to

∂

∂z

[〈
u p

〉 〈
cw′

p

〉 + 〈
cu′

pw
′
p

〉] = −〈Fx 〉 . (11)

Now, if the left hand side is instead written with averages taken only over the dispersed phase (or,
equivalently, writing in terms of concentration-weighted averages), Eq. (11) becomes

∂

∂z
〈c〉 〈

u′
pw

′
p

〉
c
= −〈Fx 〉 , (12)

where 〈 · 〉 c denotes a concentration-weighted average. It should be pointed out that since Fi, the
force per unit volume which appears in the momentum equations, has been computed via Eq. (6)
as a projection of the individual values of fi for each particle, the concentration dependence of this
term has already been implicitly accounted for (hence why the right hand side of Eq. (12) does not
contain the dispersed phase concentration).

Integrating over the wall-normal direction then leads to the expression

〈c〉 〈
u′

pw
′
p

〉
c
=

∫ z

0
− 〈

Fx (z∗)
〉
dz∗ ≡ τparticle. (13)

Thus the particle stress of Eq. (8) can be written in terms of the fluctuating particle velocities.
Recalling from Figure 5 that losses in turbulent transport via the carrier phase Reynolds stress

〈
u′w′〉

are almost fully compensated by increases in the particle stress, Eq. (13) physically states that this
new particle stress is in essence the Reynolds stress of the dispersed phase. Furthermore, Eq. (13)
indicates that it is possible to experimentally measure τ particle by computing particle statistics via
methods such as phase-Doppler anemometry.

The picture that develops is one where the presence of inertial particles (greater than or equal
to a Stokes number of about 1) at moderate mass loadings can significantly change the nature of the
carrier phase flow. While the total stress remains constant within 4% over the simulations performed,
the partitioning of this transfer between the carrier and dispersed phase is highly sensitive to both
the particle Stokes number and the mass loading. Since the carrier phase Reynolds stress is reduced,
this implies significant changes to the flow turbulence, as indicated by the profiles of u′

rms and w′
rms

in Figures 3 and 4. These changes and their dependence on StK and φm are discussed in Sec. V.

V. DISCUSSION

A. Fluctuating velocities

Figure 3 shows that in general, particularly for the case with high mass loading, u′
rms is increased

across much of the Couette cell height. This increase in the streamwise variance is in sharp contrast to
the decreases in magnitudes of v′

rms (not shown), w′
rms (Figure 4), and

〈
u′w′〉 (Figure 5). By viewing a
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FIG. 6. Instantaneous snapshots of normalized fluctuating streamwise velocity u′/U0 with particle locations (black dots) for
the following cases: unladen (top row); Run 3: StK = 10.2, φm = 0.5 (middle row); and Run 4: StK = 1.2, φm = 0.25 (bottom
row). Left column is at a location of z+ = 20 and right column is at the channel midplane: z/H = 0.5. Note that particle sizes
have been magnified and thus are not to scale.

snapshot of an instantaneous field of the fluctuating velocity u′, the reason for this increase becomes
clear. Figure 6 shows contours of u′/U0 in an x-y plane, along with dots representing instantaneous
particle locations, at two different heights: z+ = 20 (near the peak location of u′

rms) and z/H = 0.5
(the centerline). The unladen case is compared to the two cases with the highest degree of turbulence
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modification: the high mass loading case (Run 3: StK = 10.2, φm = 0.5) and the low StK case (Run
4: StK = 1.2, φm = 0.25).

The velocity contours in this figure show that the flow is significantly altered by the presence of
the dispersed phase. Near the wall (left column), the high- and low-speed streaks appear both longer
and stronger in the streamwise direction for the laden cases, particularly for high mass loading. These
strengthened streaks correlate more coherently with the large mid-plane rollers located directly above
(seen on the right column). At the channel midplane, these rollers become noticeably stronger and
coherent as well, with a general decrease in small-scale turbulence. This visual evidence is stronger
for the φm = 0.5, StK = 10.2 case (Figures 6(c) and 6(d)) than for the lower StK case at φm = 0.25
(Figures 6(e) and 6(f)). The increase of streamwise velocity fluctuations seen in Figure 3 results
from the strengthening of the midplane rollers and near-wall streaks, despite the visual reduction of
small-scale turbulence and the decrease of v′

rms and w′
rms .

This increased near-wall streak coherency and subsequent rise in u′
rms has been previously

observed for particle-laden flows. Zhao et al.19 numerically studied a turbulent channel flow with a
large mass loading (φm = 1.0) and moderate Stokes number (St+ = 30), and found not only a similar
increase of the u′

rms profile and decrease of the v′
rms and w′

rms profiles, but a similar qualitative
change to the near-wall streaks as well (without the effects of the midplane rollers). These streaks
become longer in streamwise extent, more intense, and wider in spanwise wavelength. As the authors
point out,19 this change to the near-wall turbulence shares the same qualitative behavior as turbulent
channel flow in the presence of drag-reducing polymer additives.44

To examine this behavior more quantitatively, normalized energy spectra E11(ky) as a function
of the spanwise wavenumber ky are shown in Figure 7 for all cases at the same heights shown in
Figure 6. Among these spectra, two distinguishing features stand out. First, energy contained near
the dissipative scales is generally diminished for all cases at both heights—an effect qualitatively
observed in Figure 6. This behavior is monotonic with increasing φm and maximized at StK = 1.2.
Second, energy at the low wavenumber end of the spectrum generally increases with the addition
of particles. With increasing mass fraction, the peak in the spectrum shifts to lower wavenumbers,
and becomes more energetic at both heights. As a function of StK, the energy at low wavenumbers is
increased as well, with a maximum at StK = 1.2. In the limit of high Stokes number, the energy spectra
at low wavenumbers remain nearly unchanged. This pattern of more energetic, lower wavenumber
structures of u′ in the spanwise direction is indicative of the strengthening and widening of both the
midplane rollers and near-wall streaks as seen in Figure 6. Since the near-wall streaks are heavily
influenced by the presence of the midplane rollers, the wavenumber associated with the roller spacing
is manifested as a peak in the energy spectrum throughout the entire channel height.

In their experimental study, Kulick et al.42 showed that with the addition of copper particles,
changes to the streamwise energy spectra E11(kx) were in qualitative contrast with the present results
(note that spectra in Figure 7 are in the spanwise direction; streamwise spectra E11(kx) exhibited
similar high-wavenumber behavior with particle effects and are not shown here). Depending on
the mass loading, energy attenuation was found to be particularly pronounced in distinct frequency
bands—a phenomena also in contrast to previous wall-bound experimental results.45, 46 The disparity
in Reynolds number (and therefore the ratio of the largest to smallest length scales) between
feasible simulations and typical experimental setups prevents a further examination of this effect, and
therefore the question of how particles under the point-particle approximation manifest their presence
in energy spectra of high-Reynolds number, wall-bounded flows remains open until additional
simulations are performed. It is worthwhile to note that the spectra shown in Figure 7 are in
qualitative disagreement with energy spectra taken from several numerical studies of isotropic,
particle-laden turbulence. In many of the spectra reviewed by Poelma and Ooms,47 a “crossover
wavenumber” was observed, beyond which the dispersed phase (of Stokes number O(1)) enhances
energy content. Only at sufficiently high StK do these studies begin to see energy suppression at high
wavenumbers. In the current simulations, we do not observe any degree of turbulence augmentation
at high wavenumbers, even at the lowest probed Stokes number, highlighting the fundamental
differences between wall-bounded and homogeneous turbulence and its response to inertial particles.
The order-of-magnitude differences between StK and St+ illustrate this fact (see Table I), and the
physical mechanisms described in the various studies reviewed by Poelma and Ooms47 explaining



053304-13 D. H. Richter and P. P. Sullivan Phys. Fluids 25, 053304 (2013)

(a) z+ = 20

φ
φ

(b) z+ = 20

(c) z/H = 0.5

φ
φ
φ

(d) z/H = 0.5

FIG. 7. Energy spectra E11 taken in the spanwise direction (ky) for all cases. Top row is spectra at a height of z+ = 20 and
bottom row is spectra at the channel midplane: z/H = 0.5. (a) and (c) Comparison of cases holding φm constant at 0.25. (b)
and (d) Comparison of cases holding StK ≈ 11 and varying φm

the enhanced small-scale energy do not necessarily apply in wall-bounded turbulence with mean
gradients.

Focusing now on the distribution of particles, Figure 6 qualitatively demonstrates that particles
with StK = 1.2 have a greater tendency to collect in regions loosely corresponding to smaller scale
turbulent structures (e.g., the near-wall, low-speed streaks), while particles with StK = 10.2 tend to
accumulate in regions associated with the large midplane rollers. The probability density function
of the streamwise velocity fluctuation seen by the particle (u′

f , the carrier phase velocity fluctuation
at the particle location) for all particles within the range 10 ≤ z+ ≤ 20 is shown in Figure 8. The
probability density function for the StK = 10.2 case exhibits two peaks: one broad peak centered
slightly on the negative side of the u′

f /U0 = 0 axis, and one sharper peak near u′
f /U0 ≈ −0.2.

The sharp peak at u′
f /U0 ≈ −0.2 corresponds to a large number of particles residing in the large,

low-speed regions associated with the midplane rollers. For the StK = 1.2 case, however, Figure 8
shows that these particles, on average, experience a broader range of negative streamwise velocity
fluctuation, exhibiting only one broad peak centered around u′

f /U0 ≈ −0.07. The lack of a sharp
peak associated with the midplane rollers indicates that while they still tend to accumulate in
low-speed regions near the wall (the mean value of u′

f /U0 is negative), their distribution is more
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′

′

φ
φ

FIG. 8. Probability density function of the fluctuating streamwise velocity, computed at the particle location, for all particles
within range 10 ≤ z+ ≤ 20. Two curves are shown: Run 3 (StK = 10.2, φm = 0.5) and Run 4 (StK = 1.2, φm = 0.25)

widespread since they preferentially concentrate on smaller scales than the StK = 10.2 particles, and
not necessarily in streaks corresponding to the midplane rollers.

This difference in the spatial scale of particle clustering at different StK is entirely due to the
acceleration time scale of the particle, and the preferential concentration observed in the system
can be predicted by estimating relevant local time scales. As will be shown later, the streamwise
vortices associated with near-wall velocity streaks have a characteristic nondimensional vorticity on
the order of ωnw H/U0 ≈ 1.25, leading to a characteristic time scale of τnwU0/H ≈ 0.8. This is ap-
proximately equal to the nondimensional particle time scale for the StK = 1.2 case, leading to a local
Stokes number (based on the characteristic vorticity of the near-wall structures) of approximately
1. Previous studies show13 that particles with a Stokes number of 1 approach a maximum in prefer-
ential concentration. Therefore, the StK = 1.2 particles accumulate in the low-vorticity, high-strain-
rate regions associated with the spatial scales of the near-wall vortices. Larger particles, however
(StK = 10.2), do not display this small-scale segregation, but rather collect in near-wall regions as-
sociated with the convergence zones of the large-scale midplane rollers. By estimating the vorticity
of these rollers from the maximum value of the wall-normal velocity and the channel height, it is
found that the nondimensional time scale for the midplane rollers is roughly τmprH/U0 ≈ 2. The time
scale for the StK = 10.2 particles is roughly the same (≈2), thus these larger particles preferentially
concentrate in response to motion of the midplane rollers, not the near-wall streaks. At still higher
Stokes numbers, the concentration of particles merely appears homogeneous (not shown).

Physically, therefore, it appears that as the particle time scale is increased, the spatial scale on
which they preferentially concentrate increases as well, from the near-wall vortical structures to the
large midplane rollers. This adjustment of the particle clustering length scale with changing Stokes
number is discussed from a theoretical basis in other studies.48, 49 The smaller particles therefore
“operate” on scales associated with the near-wall streaks while the larger particles do so on the
larger structures. While the higher StK particles collect in the large-scale regions associated with
midplane rollers, their trajectory is more or less unaffected by smaller scale motions, which as a
result dampens small-scale turbulent fluctuations. What appears to occur, therefore, is the same
process on two different spatial scales: just as the StK = 1.2 particles cause the near-wall streaks to
become more coherent and damp wall-normal fluctuations, the StK = 10.2 particles do the same to
the midplane rollers, strengthening their streamwise coherence while at the same time damping all
fluctuating motions occurring at smaller time scales.
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FIG. 9. (a) Joint probably distribution function of streamwise (u′) and wall-normal (w′) velocity fluctuations at a height of
z+ = 40. Panels (b)–(d) show difference between laden and unladen cases: Pdi f f (u′, w′) = Pladen(u′, w′) − Punladen(u′, w′).
(b) StK = 11.7, φm = 0.25 (Run 2); (c) StK = 10.2, φm = 0.5 (Run 3); and (d) StK = 1.2, φm = 0.25 (Run 4). Note that the u′
and w′ axes use different scales.

B. Near-wall turbulent transport

This naturally leads to a discussion of the stress profiles presented in Figure 5, where momentum
transport due to turbulent carrier phase motions is significantly reduced while compensated almost
completely by a rise in the magnitude of the particle stress τ particle. It has been argued50 that the
majority of the Reynolds stress

〈
u′w′〉 near the wall is due to “bursting” and “sweeping” events,

as evidenced by joint probably density functions of u′ and w′ dominated by the anticorrelated 2nd
and 4th quadrants (where their product is negative). The hairpin model of near-wall structures is
consistent with this statistical description, where streamwise vortices join to form a head, then lift
from the wall.51 In the present context, how does the dispersed phase alter these near-wall vortical
structures which are primarily responsible for turbulent transport? In answering this, the behavior
observed in Figure 5 can be properly explained.

Figure 9 shows joint probability distribution functions of u′ and w′ at z+ = 40 for the unladen
case, along with the differences between three laden cases and the unladen case: Two mass fractions
at roughly the same StK (Run 2: StK = 11.7, φm = 0.25; Run 3: StK = 10.2, φm = 0.5) and the low
StK case (Run 4: StK = 1.2, φm = 0.25). Clearly, for the uncoupled case (Figure 9(a)), the probability
distribution is skewed in a way that emphasizes events in the 2nd and 4th quadrants, in agreement
with the above description of sweeps and bursts. With the addition of particles of Stokes number
roughly equal to 10, the probability of events lying in these quadrants decreases with increasing
mass fraction, seen in Figures 9(b) and 9(c). This is fully consistent with the monotonic decrease



053304-16 D. H. Richter and P. P. Sullivan Phys. Fluids 25, 053304 (2013)

λ

λ

φ
φ
φ

φ
φ
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FIG. 10. Probability density function of the nondimensionalized swirling strength, |λci|H/U0. All laden cases are included
as well as the unladen case. Vertical lines represent the point where the time scale of the swirling motion (inverse of |λci|) is
equal to the acceleration time scale of particles from Run 3 (τ p, 3) and Run 4 (τ p, 4).

of the turbulent Reynolds stress magnitude found in Figure 5(a) with increasing mass fraction. The
increases along the w′ = 0 axis are indicative of the increase in strength of the near-wall streaks,
seen in Figure 3. Similarly, the decreases along the u′ = 0 axis illustrate the decrease in levels of
wall-normal velocity fluctuations seen in Figure 4. It should be emphasized that not only are the
levels of u′ and w′ changed (Figures 3 and 4), but the correlations between these fluctuating events
are changed with particle mass fraction as well. The change in correlation is confirmed by observing

that the correlation coefficient
〈
u′w′〉 / (〈

u′2〉1/2 〈
w′2〉1/2

)
decreases in the same way as the Reynolds

stress
〈
u′w′〉 in Figure 5 (not shown).

For the low StK particle case, some explanation is required. Qualitatively, the change in the joint
probability distribution function (Figure 9(d)) looks much like that for the StK = 11.7 case at the
same φm. This is despite the fact that, as shown in Figure 5(b), the reduction in turbulent momentum
transport is noticeably larger for the StK = 1.2 case compared to the StK = 11.7 case. It would
therefore appear that even with relatively little change to the joint probability function of u′ and w′,
particles with StK ≈ 1 can, at the same mass fraction, reduce turbulent transport more effectively.
This would indicate that any changes in turbulent structure would be in events of u′ or w′ that do not
contribute strongly to the joint probability distribution.

To examine the events responsible for sweep and ejection processes, the local “swirling strength”
|λci|, is used, which is mathematically defined as the magnitude of the imaginary part of the complex
eigenvalue of the local velocity gradient tensor. This quantity is proposed by Zhou et al.52 for
visualizing hairpin structures in a turbulent channel flow. Figure 10 shows probability distribution
functions of |λci|H/U0 over the entire domain. Not surprisingly, the figure shows that increasing the
mass fraction at StK ≈ 11 results in a monotonic reduction of |λci| events, above |λci|H/U0 equal to
about 0.5.

For the low Stokes number case, however, a transition can be seen in Figure 10. Below |λci|H/U0

≈ 1.5, the number of swirling events is similar to the StK = 11.7 case at the same φm. Above this
value, however, the distribution function falls off more steeply with increasing |λci|H/U0, eventually
joining that for the high φm case around |λci|H/U0 ≈ 2.25. This indicates that the low Stokes number
particles are reducing the number of high-|λci| events more effectively than lower |λci| events. The
fact that low Stokes number particles are transported by weaker swirling motions but resist stronger
swirling motions explains this behavior. In Figure 10, two vertical lines are included: one illustrating
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where the time scale of the vortical motions (given by the inverse of |λci|) equals the particle
acceleration time scale for the StK = 11.7 case (Run 3, τ p, 3), and the same for the StK = 1.2 case
(Run 4, τ p, 4). For StK > 10, all vortical motions identified by |λci| occur on faster time scales, and
thus must work to accelerate any nearby particles. As a result, the number of events at all swirling
strengths is reduced uniformly across the entire range of applicable |λci| (to the right of the leftmost
vertical line). For the StK = 1.2 case, however, only beyond the rightmost vertical line, where the
vortical motions occur on faster time scales than the particle acceleration time scale, do the number of
swirling events decay as much as those for the high φm case. This dampening of near-wall structures
is corroborated by the experiments of Rashidi et al.,53 who, by studying a turbulent particle-laden
boundary layer, conclude that while bursting events from the wall were no stronger or weaker in the
presence of small particles, they were less frequent, and this resulted in a net reduction of turbulent
transport to/from the wall. Furthermore, Righetti and Romano43 observe that in a turbulent open
channel, the intensity (time-weighted contribution from a particular quadrant) of quadrants 2 and
4, particularly for quadrant 2, is diminished in the presence of particles above z+ ≈ 20. This is in
qualitative agreement with the present results.

A mechanistic explanation provides the reasoning behind how particles can reduce the number
of high-strength swirling events. Dritselis and Vlachos20, 21 studied particle-laden channel flows
and used conditional averaging to investigate how particles interact with near-wall vortices. They
found that particles residing in vortical regions provide a torque opposite to the carrier phase motion
since each particle must be accelerated by the surrounding fluid. This opposing torque weakens the
conditionally averaged near-wall, quasistreamwise vortex, and increases its diameter in the process.
If the particle Stokes number is too low, it will merely travel with the vortical motion and the torque
exerted on the carrier phase will weaken. Furthermore, the analytic study by Druzhinin54 showed
similar results: particles centrifuged out of an idealized vortical flow weaken the vortex through drag
while retreating to regions of high strain.

Ultimately, the physical picture is proposed as follows. In general, a single inertial (large StK)
particle, when confronted with a carrier phase velocity fluctuation of a time scale shorter than the
particle’s acceleration time scale (either as part of a coherent motion or not), will tend to remain on
a straight trajectory, damping the strength of the fluctuation through the particle’s drag. Assuming
for the moment a homogeneous concentration of particles, an increase in their number will lead
to increased feedback forces everywhere, reflected by the addition of the substantial particle stress
across the geometry height. This was clearly seen in Figure 5(b) for increases in φm at a nearly
constant StK ≈ 11. For this StK and higher, the particles are in fact nearly homogeneous in x-y planes,
with the exception that StK ≈ 11 particles still preferentially concentrate in the regions associated
with convergence regions of the midplane rollers. As far as the near-wall streaks are concerned,
however, these heavy particles are nearly uniformly distributed.

For lower StK particles, the picture becomes more interesting. Figures 6(e) and 6(f) show that
these smaller particles preferentially concentrate on the scales associated with the near-wall, low-
speed streaks. So despite the lower bulk concentration, and despite only being able to resist motions
of time scales 10 times smaller than the StK = 11.7 case, this local enhancement results in high-
strength vortical structures being damped in nearly the same way as a higher bulk mass loading (Run
3). In this way, particle modification of near-wall turbulent motions is optimized when particles
preferentially concentrate on length scales equal to those responsible for wall-normal momentum
transfer. With too little preferential concentration (high StK), the particles remain homogeneously
distributed and are, on average, not efficiently located in regions where they can impact wall-normal
momentum transport. This is illustrated by Run 5, where StK = 97.2. With very low StK, however,
the particles travel with the flow and thus produce zero feedback effect.

Finally, this says nothing of the consequences of adding other physical processes not included in
the numerical model, such as particle collisions, gravity, or finite-diameter effects. These have been
investigated in other studies,21, 23 and modify this simple physical picture. For example, the high
degree of preferential concentration in the StK = 1.2 case leads to maximum volume concentrations
which in some cases can approach O(1) locally within the domain. In these highly localized regions,
the non-interacting assumption of these point-particles is violated, and the effect of particle collisions
needs to be considered. Previous studies, such as that by Dritselis and Vlachos21 indicate that
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particle collisions enhance the turbulence modification seen with the addition of the dispersed phase.
Generally speaking, however, we anticipate that the present description of turbulence-attenuating
particles can provide a foundation toward building further understanding.

VI. CONCLUSIONS

Simulations of particle-laden turbulent Couette flow are performed to investigate and explain
the feedback effects of a dispersed phase on a turbulent carrier phase. The wall-normal transfer of
momentum is of primary interest. By limiting our study to particles which meet the requirements
for the point-particle approximation (i.e., low volume fraction, no particle-particle interactions,
small particle size compared to the smallest turbulent scales), we are able to probe the space of
particle Stokes number and mass fraction, as these are the primary parameters of interest under these
restrictions.

Turbulence modification is qualitatively similar to previous experimental and numerical studies
of wall-bounded turbulent flows. A strengthening of the near-wall streaks leads to an increase in
the streamwise fluctuating velocity (u′

rms), while spanwise and wall-normal velocity fluctuations are
damped. Furthermore, the magnitude of the turbulent Reynolds stress decreases significantly for
certain cases, and is counterbalanced by a stress carried by the dispersed phase. The end result is
a total momentum transfer which remains nearly the same for all particle parameters studied, but
where the contribution from turbulent motions can significantly diminish. This reduction of turbulent
transport is found to arise from a weakening and damping of near-wall turbulent structures, and the
effectiveness of the particles to achieve this rely heavily on the ability of the particles to concentrate
locally.

Since particle-particle interactions are neglected, the increase of the bulk mass fraction φm

typically enhances each observed effect. The behavior as a function of Stokes number, however,
does not display this monotonic relationship, since preferential concentration plays a critical role.
Because the time scale of the StK = 1.2 particles is of the same order as the time scales of the near-
wall vortices, they efficiently weaken these motions compared to particles with longer time scales
because they cluster on these scales, leading to high local concentrations and therefore high local
feedback forces. Particles with increasing Stokes numbers cannot preferentially concentrate at these
length and time scales (they cluster at larger length scales, as seen by the StK ≈ 11 particles), which
does not lead to the same decrease in the near-wall structures responsible for turbulent transport.
Particles with lower Stokes numbers, on the other hand, merely travel with the near-wall motions,
resulting in decreasing feedback forces as the Stokes number approaches zero.
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